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User complaints
“Inconsistent performance on ruby”

! Some users were reporting inconsistencies in the time to 
run their codes on ruby (512 processor SGI O3K)
• similar or identical jobs could take significantly different 

amounts of time
• difficult to analyze or reproduce (results appeared to be 

random)
! “Common knowledge” that on single image SGI O3Ks with 

large numbers of processors that such behavior occurs.



What’s the cause of this behavior?
! Competition with system tasks

• On a fully loaded machine, system tasks must use the 
same resources as user jobs

! Migrating processes
• Processes are not bound to specific processors
• Operating system can move the processes around
• *Data* does not migrate " a process may be accessing 

memory located “far away”



What’s the cause of this behavior?

! The “SGI Shuffle”
• Tasks are not “stuck” to a processor; the 

operating system moves tasks around 
between processors during execution

• Data does not migrate



“SGI Shuffle”
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Enter cpusets
! Cpusets are a logical partitioning of processors and/or 

memory
! “boot cpuset” created at system startup --- handles system 

tasks and daemons
! When PBS starts a job, a cpuset is created and the job runs 

within that cpuset
! Other tasks are not allowed access to the resources of the 

cpuset



Cpuset partitioning -- schematic
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CPUSETS
! Most large single image Origin systems are configured to 

use cpusets
! “Common” knowledge that cpusets improve performance
! However, it is difficult to find the results of any tests that 

quantify the problem or measure its magnitude



Experimental Results
! SGI provided access to a 256-processor O3K

! Experiments included throughput tests to measure the 
performance of the system both with and without cpusets 
implemented

! The results of the tests were striking (and surprising)



Throughput Test
! Constructed a throughput test consisting of runs of 6 

different codes
• All codes were MPI codes

! Various input decks and processor counts
• 15 distinct runs with multiple copies of many



Throughput Test
! For the throughput test, the jobs were submitted via PBS. 

The machine was heavily loaded during the test.

• The throughput test was run 3 times with the machine 
configured without cpusets and 3 times with the machine 
configured with cpusets.
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Throughput Test
! For the 3 tests, using cpusets saved approximately

• 33%
• 38%
• 42%

cpu time compared without using cpusets

! Note that there is very little variation in the times for the 3 
tests using cpusets
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Additional Test
! Question:  should we use all the processors?

! Used two codes that scale well and submitted jobs that used 
all or most of the processors on the machine



Using all the processors?
CODE 1 

# of with without 
processors cpusets cpusets 

    1 2 3 
248 616 627 627 630 
256 n/a 621 630 625 

         
CODE 2 

# of with without 
processors cpusets cpusets 

    1 2 3 
248 1676 1682 1684 1704 
256 n/a 1730 1719 1725 

 

Time in seconds for job run



Experiment 2  - 512 cpus
! Brief access to a 512-processor O3K
! Constructed a simpler throughput test consisting of runs of 5 

different user codes (2 of which were serial codes)
! Various input decks and processor counts

• 14 distinct runs with multiple copies of many



Throughput test on 512 processors

! Only ran throughput test once each with cpusets and 
without cpusets

! Total cpu time 
• 961 hours --- without cpusets
• 744 hours --- with cpusets

! Saved 23% cpu time by using cpusets



Throughput test on 512 processors

! Why not the same size improvement as observed in 
Experiment 1?
• Didn’t load the machine up as well
• Different mix of jobs
• Shorter wall clock time – jobs at the end were actually 

running “almost dedicated”

! Did include serial jobs in this test.
• using cpusets saved 11% on all of the serial tasks.



Conclusions
! cpusets are a good idea!

! On a heavily loaded large scale SGI Origin there will be a 
significant increase in average job throughput.

! Improved performance will be seen on both parallel and 
serial codes (however, there will be some codes which show 
little difference).



Comments
! One thing to be remembered: HPC systems are still 

“community” assets
What one user does on the machine can effect the 
performance of another application
• Competition for processors/memory
• I/O

! We have a duty to be “responsible” users
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